Kopieren Sie diesen Prompt in unsere Console für Entwickler, um es selbst auszuprobieren!

Content
SystemWandeln Sie die folgenden natürlichsprachlichen Anfragen in gültige SQL-Abfragen um. Gehen Sie von einer Datenbank mit den folgenden Tabellen und Spalten aus:

Customers:
- customer_id (INT, PRIMARY KEY)
- first_name (VARCHAR)
- last_name (VARCHAR)
- email (VARCHAR)
- phone (VARCHAR)
- address (VARCHAR)
- city (VARCHAR)
- state (VARCHAR)
- zip_code (VARCHAR)

Products:
- product_id (INT, PRIMARY KEY)
- product_name (VARCHAR)
- description (TEXT)
- category (VARCHAR)
- price (DECIMAL)
- stock_quantity (INT)

Orders:
- order_id (INT, PRIMARY KEY)
- customer_id (INT, FOREIGN KEY REFERENCES Customers)
- order_date (DATE)
- total_amount (DECIMAL)
- status (VARCHAR)

Order_Items:
- order_item_id (INT, PRIMARY KEY)
- order_id (INT, FOREIGN KEY REFERENCES Orders)
- product_id (INT, FOREIGN KEY REFERENCES Products)
- quantity (INT)
- price (DECIMAL)

Reviews:
- review_id (INT, PRIMARY KEY)
- product_id (INT, FOREIGN KEY REFERENCES Products)
- customer_id (INT, FOREIGN KEY REFERENCES Customers)
- rating (INT)
- comment (TEXT)
- review_date (DATE)

Employees:
- employee_id (INT, PRIMARY KEY)
- first_name (VARCHAR)
- last_name (VARCHAR)
- email (VARCHAR)
- phone (VARCHAR)
- hire_date (DATE)
- job_title (VARCHAR)
- department (VARCHAR)
- salary (DECIMAL)

Stellen Sie die SQL-Abfrage bereit, die die Daten basierend auf der natürlichsprachlichen Anfrage abruft.
UserHolen Sie die Liste der Kunden, die Bestellungen aufgegeben, aber keine Bewertungen abgegeben haben, zusammen mit dem Gesamtbetrag, den sie für Bestellungen ausgegeben haben.

Beispielausgabe

SELECT c.first_name, c.last_name, SUM(o.total_amount) AS total_spent
FROM Customers c
INNER JOIN Orders o ON c.customer_id = o.customer_id
LEFT JOIN Reviews r ON c.customer_id = r.customer_id
WHERE r.review_id IS NULL
GROUP BY c.customer_id, c.first_name, c.last_name;

API-Anfrage

import anthropic

client = anthropic.Anthropic(
  # defaults to os.environ.get("ANTHROPIC_API_KEY")
  api_key="my_api_key",
)
message = client.messages.create(
  model="claude-3-5-sonnet-20241022",
  max_tokens=1000,
  temperature=0,
  system="Wandeln Sie die folgenden natürlichsprachlichen Anfragen in gültige SQL-Abfragen um. Gehen Sie von einer Datenbank mit den folgenden Tabellen und Spalten aus: \n \nCustomers: \n- customer_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- address (VARCHAR) \n- city (VARCHAR) \n- state (VARCHAR) \n- zip_code (VARCHAR) \n \nProducts: \n- product_id (INT, PRIMARY KEY) \n- product_name (VARCHAR) \n- description (TEXT) \n- category (VARCHAR) \n- price (DECIMAL) \n- stock_quantity (INT) \n \nOrders: \n- order_id (INT, PRIMARY KEY) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- order_date (DATE) \n- total_amount (DECIMAL) \n- status (VARCHAR) \n \nOrder_Items: \n- order_item_id (INT, PRIMARY KEY) \n- order_id (INT, FOREIGN KEY REFERENCES Orders) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- quantity (INT) \n- price (DECIMAL) \n \nReviews: \n- review_id (INT, PRIMARY KEY) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- rating (INT) \n- comment (TEXT) \n- review_date (DATE) \n \nEmployees: \n- employee_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- hire_date (DATE) \n- job_title (VARCHAR) \n- department (VARCHAR) \n- salary (DECIMAL) \n \nStellen Sie die SQL-Abfrage bereit, die die Daten basierend auf der natürlichsprachlichen Anfrage abruft.",
  messages=[
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "Holen Sie die Liste der Kunden, die Bestellungen aufgegeben, aber keine Bewertungen abgegeben haben, zusammen mit dem Gesamtbetrag, den sie für Bestellungen ausgegeben haben."
        }
      ]
    }
  ]
)
print(message.content)