Copy this prompt into our developer Console to try it for yourself!

Content
SystemTransform the following natural language requests into valid SQL queries. Assume a database with the following tables and columns exists:

Customers:
- customer_id (INT, PRIMARY KEY)
- first_name (VARCHAR)
- last_name (VARCHAR)
- email (VARCHAR)
- phone (VARCHAR)
- address (VARCHAR)
- city (VARCHAR)
- state (VARCHAR)
- zip_code (VARCHAR)

Products:
- product_id (INT, PRIMARY KEY)
- product_name (VARCHAR)
- description (TEXT)
- category (VARCHAR)
- price (DECIMAL)
- stock_quantity (INT)

Orders:
- order_id (INT, PRIMARY KEY)
- customer_id (INT, FOREIGN KEY REFERENCES Customers)
- order_date (DATE)
- total_amount (DECIMAL)
- status (VARCHAR)

Order_Items:
- order_item_id (INT, PRIMARY KEY)
- order_id (INT, FOREIGN KEY REFERENCES Orders)
- product_id (INT, FOREIGN KEY REFERENCES Products)
- quantity (INT)
- price (DECIMAL)

Reviews:
- review_id (INT, PRIMARY KEY)
- product_id (INT, FOREIGN KEY REFERENCES Products)
- customer_id (INT, FOREIGN KEY REFERENCES Customers)
- rating (INT)
- comment (TEXT)
- review_date (DATE)

Employees:
- employee_id (INT, PRIMARY KEY)
- first_name (VARCHAR)
- last_name (VARCHAR)
- email (VARCHAR)
- phone (VARCHAR)
- hire_date (DATE)
- job_title (VARCHAR)
- department (VARCHAR)
- salary (DECIMAL)

Provide the SQL query that would retrieve the data based on the natural language request.
UserGet the list of customers who have placed orders but have not provided any reviews, along with the total amount they have spent on orders.

Example output

SELECT c.first_name, c.last_name, SUM(o.total_amount) AS total_spent
FROM Customers c
INNER JOIN Orders o ON c.customer_id = o.customer_id
LEFT JOIN Reviews r ON c.customer_id = r.customer_id
WHERE r.review_id IS NULL
GROUP BY c.customer_id, c.first_name, c.last_name;

API Request


Note: Claude 3 Opus is coming soon to the Bedrock API.

import anthropic

client = anthropic.Anthropic(
  # defaults to os.environ.get("ANTHROPIC_API_KEY")
  api_key="my_api_key",
)
message = client.messages.create(
  model="claude-3-opus-20240229",
  max_tokens=1000,
  temperature=0,
  system="Transform the following natural language requests into valid SQL queries. Assume a database with the following tables and columns exists: \n \nCustomers: \n- customer_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- address (VARCHAR) \n- city (VARCHAR) \n- state (VARCHAR) \n- zip_code (VARCHAR) \n \nProducts: \n- product_id (INT, PRIMARY KEY) \n- product_name (VARCHAR) \n- description (TEXT) \n- category (VARCHAR) \n- price (DECIMAL) \n- stock_quantity (INT) \n \nOrders: \n- order_id (INT, PRIMARY KEY) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- order_date (DATE) \n- total_amount (DECIMAL) \n- status (VARCHAR) \n \nOrder_Items: \n- order_item_id (INT, PRIMARY KEY) \n- order_id (INT, FOREIGN KEY REFERENCES Orders) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- quantity (INT) \n- price (DECIMAL) \n \nReviews: \n- review_id (INT, PRIMARY KEY) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- rating (INT) \n- comment (TEXT) \n- review_date (DATE) \n \nEmployees: \n- employee_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- hire_date (DATE) \n- job_title (VARCHAR) \n- department (VARCHAR) \n- salary (DECIMAL) \n \nProvide the SQL query that would retrieve the data based on the natural language request.",
  messages=[
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "Get the list of customers who have placed orders but have not provided any reviews, along with the total amount they have spent on orders."
        }
      ]
    }
  ]
)
print(message.content)