Reduciendo la latencia
Entendiendo la latencia
La latencia, en el contexto de LLMs como Claude, se refiere al tiempo que tarda el modelo en procesar su entrada (el prompt) y generar una salida (la respuesta, también conocida como “completion”). La latencia puede verse influenciada por varios factores, como el tamaño del modelo, la complejidad del prompt y la infraestructura subyacente que soporta el modelo y el punto de interacción.
Siempre es mejor primero diseñar un prompt que funcione bien sin restricciones de modelo o prompt, y luego intentar estrategias de reducción de latencia después. Intentar reducir la latencia prematuramente podría impedir que descubras cómo se ve el rendimiento máximo.
Midiendo la latencia
Al hablar de latencia, puedes encontrar varios términos y medidas:
- Latencia base: Este es el tiempo que tarda el modelo en procesar el prompt y generar la respuesta, sin considerar los tokens de entrada y salida por segundo. Proporciona una idea general de la velocidad del modelo.
- Tiempo hasta el primer token (TTFT): Esta métrica mide el tiempo que tarda el modelo en generar el primer token de la respuesta, desde que se envió el prompt. Es particularmente relevante cuando estás usando streaming (más sobre eso luego) y quieres proporcionar una experiencia receptiva a tus usuarios.
Para una comprensión más profunda de estos términos, consulta nuestro glosario.
Estrategias para reducir la latencia
Ahora que tienes una mejor comprensión de la latencia, vamos a sumergirnos en tres estrategias efectivas para ayudarte a minimizarla y hacer que tus aplicaciones impulsadas por Claude sean más rápidas que nunca.
1. Elige el modelo correcto
Una de las formas más sencillas de reducir la latencia es seleccionar el modelo apropiado para tu caso de uso. Anthropic ofrece una gama de modelos con diferentes capacidades y características de rendimiento:
- Claude 3 Haiku: Como nuestro modelo más rápido, Haiku es ideal para aplicaciones que requieren respuestas rápidas y pueden tolerar un tamaño de modelo ligeramente más pequeño.
- Claude 3 Sonnet: Logrando un equilibrio entre velocidad y tamaño de modelo, Sonnet ofrece un mejor rendimiento que Haiku mientras mantiene una latencia relativamente rápida.
- Claude 3 Opus: Como nuestro modelo más grande y poderoso, Opus es perfecto para tareas complejas que demandan la más alta calidad de salida. Sin embargo, puede tener una latencia más alta en comparación con Haiku y Sonnet.
Considera tus requisitos específicos y elige el modelo que mejor se adapte a tus necesidades en términos de velocidad y calidad de salida. Para más detalles sobre las métricas de los modelos, consulta nuestra página de resumen de modelos.
2. Optimiza la longitud del prompt y la salida
Otra forma efectiva de reducir la latencia es minimizar el número de tokens tanto en tu prompt de entrada como en la salida esperada. Cuantos menos tokens tenga que procesar y generar el modelo, más rápida será la respuesta.
Aquí hay algunos consejos para ayudarte a optimizar tus prompts y salidas:
- Sé claro pero conciso: Apunta a transmitir tu intención de manera clara y concisa en el prompt. Evita detalles innecesarios o información redundante, teniendo en cuenta que Claude carece de contexto sobre tu caso de uso y puede no hacer los saltos de lógica previstos si las instrucciones no son claras.
- Pide respuestas más cortas: Pídele directamente a Claude que sea conciso. La familia de modelos Claude 3 ha mejorado la capacidad de dirección sobre las generaciones anteriores. Si Claude está generando una longitud no deseada, pídele a Claude que limite su locuacidad.
Nota: Debido a cómo los LLMs cuentan tokens en lugar de palabras, pedir un recuento exacto de palabras o un límite de recuento de palabras no es una estrategia tan efectiva como pedir límites de recuento de párrafos u oraciones.
- Establece límites de salida apropiados: Usa el parámetro
max_tokens
para establecer un límite estricto en la longitud máxima de la respuesta generada. Esto evita que Claude genere salidas excesivamente largas.Nota: Cuando la respuesta alcanza los tokens
max_tokens
, la respuesta se cortará, quizás a mitad de una oración o palabra, por lo que esta es una técnica contundente que puede requerir posprocesamiento y generalmente es más apropiada para respuestas de opción múltiple o respuestas cortas donde la respuesta viene justo al principio. - Experimenta con la temperatura: El parámetro
temperature
controla la aleatoriedad de la salida. Valores más bajos (por ejemplo, 0.2) a veces pueden conducir a respuestas más enfocadas y cortas, mientras que valores más altos (por ejemplo, 0.8) pueden resultar en salidas más diversas pero potencialmente más largas.
Encontrar el equilibrio adecuado entre la claridad del prompt, la calidad de la salida y el recuento de tokens puede requerir algo de experimentación, pero vale la pena el esfuerzo si lograr una latencia óptima es importante para tu caso de uso.
Para más información sobre los parámetros, visita nuestra documentación de la API.
3. Aprovecha el streaming
El streaming es una característica que permite al modelo comenzar a enviar su respuesta antes de que la salida completa esté lista. Esto puede mejorar significativamente la capacidad de respuesta percibida de tu aplicación, ya que los usuarios pueden ver la salida del modelo en tiempo real.
Con el streaming habilitado, puedes procesar la salida del modelo a medida que llega, actualizando tu interfaz de usuario o realizando otras tareas en paralelo. Esto puede mejorar enormemente la experiencia del usuario y hacer que tu aplicación se sienta más interactiva y receptiva.
Visita streaming Messages para aprender sobre cómo puedes implementar streaming para tu caso de uso.
Concluyendo
Reducir la latencia puede ser crucial para construir aplicaciones receptivas y atractivas con Claude, dependiendo de tu caso de uso. Al elegir el modelo correcto, optimizar tus prompts y salidas, y aprovechar el streaming, puedes mejorar significativamente la velocidad y el rendimiento general de tus proyectos impulsados por Claude. Encontrar el equilibrio perfecto puede llevar algo de prueba y error, pero los resultados valen la pena el esfuerzo.
Si tienes más preguntas o necesitas orientación adicional, no dudes en comunicarte con nuestra comunidad en nuestro servidor de Discord o con nuestro equipo de atención al cliente. Siempre estamos aquí para ayudarte y apoyarte en tu viaje con Claude.
¡Feliz codificación! ¡Que tus aplicaciones sean tan rápidas como poderosas!