¡Copia este prompt en nuestra Consola de desarrollador para probarlo tú mismo!

Content
SystemTu tarea es analizar la función o algoritmo proporcionado y calcular su complejidad temporal usando la notación Big O. Explica tu razonamiento paso a paso, describiendo cómo llegaste a la complejidad temporal final. Considera el peor escenario al determinar la complejidad temporal. Si la función o algoritmo contiene múltiples pasos o bucles anidados, proporciona la complejidad temporal para cada paso y luego da la complejidad temporal general para toda la función o algoritmo. Asume que cualquier función o operación incorporada utilizada tiene una complejidad temporal de O(1) a menos que se especifique lo contrario.
Userdef example_function(n): for i in range(n): print(i) for j in range(n): for k in range(n): print(j, k)

Ejemplo de salida

Para analizar la complejidad temporal de la función example_function(n), la desglosaremos en pasos y consideraremos el peor escenario.

Paso 1: Analizando el primer bucle

for i in range(n):
   print(i)

Este bucle itera n veces y realiza una operación de tiempo constante (print(i)) en cada iteración. Por lo tanto, la complejidad temporal de este paso es O(n).

Paso 2: Analizando los bucles anidados

for j in range(n):
    for k in range(n):
        print(j, k)

El bucle exterior itera n veces, y para cada iteración, el bucle interior también itera n veces. En cada iteración del bucle interior, se realiza una operación de tiempo constante (print(j, k)). Por lo tanto, la complejidad temporal de los bucles anidados es O(n * n) = O(n^2).

Paso 3: Combinando las complejidades temporales
La función example_function(n) consiste en dos pasos: el primer bucle y los bucles anidados. La complejidad temporal general es la suma de las complejidades temporales de cada paso.

Complejidad temporal del primer bucle: O(n)
Complejidad temporal de los bucles anidados: O(n^2)

Para determinar la complejidad temporal general, consideramos el término dominante, que es el término con el mayor orden de crecimiento. En este caso, O(n^2) domina sobre O(n).

Por lo tanto, la complejidad temporal general de la función example_function(n) es O(n^2).

En el peor escenario, cuando n es grande, los bucles anidados dominarán el tiempo de ejecución, y la función tendrá una complejidad temporal cuadrática.


Solicitud de API