Pustaka Prompt
Konsultan kode
Sumber Daya
- Overview
- Quickstarts
- Kartu model Claude 3
- Kartu sistem Claude 3.7
- Status sistem
- Anthropic Courses
- Pustaka Prompt
- Perpustakaan Prompt
- Cosmic Keystrokes
- Peramal korporat
- Website wizard
- Ahli rumus Excel
- Pembuat skrip Google apps
- Pembasmi bug Python
- Konsultan perjalanan waktu
- Teman bercerita
- Kutip sumber Anda
- Penyihir SQL
- Penafsir mimpi
- Pun-dit
- Kreator kuliner
- Penyair portmanteau
- Hal si pembantu humoris
- Legenda LaTeX
- Pewarna suasana hati
- Git gud
- Ahli perumpamaan
- Navigator dilema etis
- Pencatat rapat
- Penjelas Idiom
- Konsultan kode
- Pembuat fungsi
- Pembuat neologisme
- Konverter CSV
- Pengkode emoji
- Pemoles prosa
- Penimbang perspektif
- Generator trivia
- Mentor mindfulness
- Penyederhana tingkat dua
- Inovator kebugaran VR
- Pembersih PII
- Memo maestro
- Pelatih karier
- Guru penilaian
- Tongue twister
- Pembuat pertanyaan wawancara
- Penyihir tata bahasa
- Tebak aku ini
- Penjelas kode
- Antropolog alien
- Pengorganisir data
- Pembangun merek
- Penghitung efisiensi
- Review classifier
- Penerjemah arahan
- Muse motivasi
- Pengekstrak email
- Moderator ahli
- Perencana pelajaran
- Bijak Sokratik
- Alkemis aliterasi
- Penasihat mode futuristik
- Kemampuan super poliglot
- Ahli penamaan produk
- Perenungan filosofis
- Penyihir spreadsheet
- Simulator skenario fiksi ilmiah
- Editor adaptif
- Siaran Babel
- Detektor nada tweet
- Analis kode bandara
Pustaka Prompt
Konsultan kode
Sarankan perbaikan untuk mengoptimalkan performa kode Python.
Salin prompt ini ke Console pengembang kami untuk mencobanya sendiri!
Konten | |
---|---|
System | Tugas Anda adalah menganalisis cuplikan kode Python yang disediakan dan menyarankan perbaikan untuk mengoptimalkan performanya. Identifikasi area di mana kode dapat dibuat lebih efisien, lebih cepat, atau menggunakan sumber daya lebih sedikit. Berikan saran spesifik untuk optimasi, beserta penjelasan bagaimana perubahan ini dapat meningkatkan performa kode. Kode yang dioptimalkan harus mempertahankan fungsionalitas yang sama seperti kode asli sambil menunjukkan efisiensi yang lebih baik. |
User | def fibonacci(n): if n <= 0: return [] elif n == 1: return [0] elif n == 2: return [0, 1] else: fib = [0, 1] for i in range(2, n): fib.append(fib[i-1] + fib[i-2]) return fib |
Contoh Output
Python
def fibonacci(n):
a, b = 0, 1
for _ in range(n):
yield a
a, b = b, a + b
Penjelasan: Menggunakan fungsi generator dengan yield lebih efisien dalam penggunaan memori untuk menghasilkan deret Fibonacci. Fungsi ini menghindari pembuatan dan penyimpanan seluruh deret dalam sebuah list. Sebagai gantinya, fungsi ini menghasilkan setiap angka secara langsung saat dibutuhkan.
Permintaan API
import anthropic
client = anthropic.Anthropic( # default ke os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib",
}
],
}
],
)
print(message.content)
import anthropic
client = anthropic.Anthropic( # default ke os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib",
}
],
}
],
)
print(message.content)
import Anthropic from "@anthropic-ai/sdk";
const anthropic = new Anthropic({
apiKey: "my_api_key", // defaults to process.env["ANTHROPIC_API_KEY"]
});
const msg = await anthropic.messages.create({
model: "claude-opus-4-20250514",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib"
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicBedrock
# Lihat https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
# untuk opsi autentikasi
client = AnthropicBedrock()
message = client.messages.create(
model="anthropic.claude-opus-4-20250514-v1:0",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib"
}
]
}
]
)
print(message.content)
import AnthropicBedrock from "@anthropic-ai/bedrock-sdk";
// Lihat https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
// untuk opsi autentikasi
const client = new AnthropicBedrock();
const msg = await client.messages.create({
model: "anthropic.claude-opus-4-20250514-v1:0",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib"
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicVertex
client = AnthropicVertex()
message = client.messages.create(
model="claude-3-7-sonnet-v1@20250219",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib"
}
]
}
]
)
print(message.content)
import { AnthropicVertex } from '@anthropic-ai/vertex-sdk';
// Membaca dari variabel lingkungan `CLOUD_ML_REGION` & `ANTHROPIC_VERTEX_PROJECT_ID`.
// Selain itu melalui alur `google-auth-library` standar.
const client = new AnthropicVertex();
const msg = await client.messages.create({
model: "claude-3-7-sonnet-v1@20250219",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib"
}
]
}
]
});
console.log(msg);
Was this page helpful?
On this page