示例
Message Batches 示例
示例
Message Batches 示例
Message Batches API 的示例用法
Message Batches API 支持与 Messages API 相同的功能集。虽然本页面专注于如何使用 Message Batches API,但请参阅 Messages API 示例 了解 Messages API 功能集的示例。
创建 Message Batch
import anthropic
from anthropic.types.message_create_params import MessageCreateParamsNonStreaming
from anthropic.types.messages.batch_create_params import Request
client = anthropic.Anthropic()
message_batch = client.messages.batches.create(
requests=[
Request(
custom_id="my-first-request",
params=MessageCreateParamsNonStreaming(
model="claude-opus-4-20250514",
max_tokens=1024,
messages=[{
"role": "user",
"content": "Hello, world",
}]
)
),
Request(
custom_id="my-second-request",
params=MessageCreateParamsNonStreaming(
model="claude-opus-4-20250514",
max_tokens=1024,
messages=[{
"role": "user",
"content": "Hi again, friend",
}]
)
)
]
)
print(message_batch)
JSON
{
"id": "msgbatch_013Zva2CMHLNnXjNJJKqJ2EF",
"type": "message_batch",
"processing_status": "in_progress",
"request_counts": {
"processing": 2,
"succeeded": 0,
"errored": 0,
"canceled": 0,
"expired": 0
},
"ended_at": null,
"created_at": "2024-09-24T18:37:24.100435Z",
"expires_at": "2024-09-25T18:37:24.100435Z",
"cancel_initiated_at": null,
"results_url": null
}
轮询 Message Batch 完成状态
要轮询 Message Batch,您需要其 id
,该 ID 在创建请求时的响应中提供,或通过列出批次获得。示例 id
:msgbatch_013Zva2CMHLNnXjNJJKqJ2EF
。
import anthropic
client = anthropic.Anthropic()
message_batch = None
while True:
message_batch = client.messages.batches.retrieve(
MESSAGE_BATCH_ID
)
if message_batch.processing_status == "ended":
break
print(f"Batch {MESSAGE_BATCH_ID} is still processing...")
time.sleep(60)
print(message_batch)
列出工作区中的所有 Message Batches
import anthropic
client = anthropic.Anthropic()
# Automatically fetches more pages as needed.
for message_batch in client.messages.batches.list(
limit=20
):
print(message_batch)
Output
{
"id": "msgbatch_013Zva2CMHLNnXjNJJKqJ2EF",
"type": "message_batch",
...
}
{
"id": "msgbatch_01HkcTjaV5uDC8jWR4ZsDV8d",
"type": "message_batch",
...
}
检索 Message Batch 结果
一旦您的 Message Batch 状态为 ended
,您将能够查看批次的 results_url
并以 .jsonl
文件的形式检索结果。
import anthropic
client = anthropic.Anthropic()
# Stream results file in memory-efficient chunks, processing one at a time
for result in client.messages.batches.results(
MESSAGE_BATCH_ID,
):
print(result)
Output
{
"id": "my-second-request",
"result": {
"type": "succeeded",
"message": {
"id": "msg_018gCsTGsXkYJVqYPxTgDHBU",
"type": "message",
...
}
}
}
{
"custom_id": "my-first-request",
"result": {
"type": "succeeded",
"message": {
"id": "msg_01XFDUDYJgAACzvnptvVoYEL",
"type": "message",
...
}
}
}
取消 Message Batch
取消后立即,批次的 processing_status
将为 canceling
。您可以使用相同的轮询批次完成技术来轮询取消何时最终确定,因为已取消的批次也会以 ended
状态结束,并可能包含结果。
import anthropic
client = anthropic.Anthropic()
message_batch = client.messages.batches.cancel(
MESSAGE_BATCH_ID,
)
print(message_batch)
JSON
{
"id": "msgbatch_013Zva2CMHLNnXjNJJKqJ2EF",
"type": "message_batch",
"processing_status": "canceling",
"request_counts": {
"processing": 2,
"succeeded": 0,
"errored": 0,
"canceled": 0,
"expired": 0
},
"ended_at": null,
"created_at": "2024-09-24T18:37:24.100435Z",
"expires_at": "2024-09-25T18:37:24.100435Z",
"cancel_initiated_at": "2024-09-24T18:39:03.114875Z",
"results_url": null
}
Was this page helpful?