資源
- Overview
- 快速入門
- Claude 3 模型卡
- Claude 3.7 系統卡
- 系統狀態
- Anthropic 課程
- 提示詞庫
- 提示詞庫
- 宇宙鍵盤
- 企業預見者
- 網站精靈
- Excel 公式專家
- Google Apps 腳本編寫者
- Python 除錯專家
- 時間旅行顧問
- 故事創作夥伴
- 引用您的來源
- SQL 巫師
- 解夢師
- 雙關語大師
- 料理創作者
- 混合詞詩人
- 幽默助手哈爾
- LaTeX 專家
- 情緒色彩轉換器
- Git 精通
- 比喻達人
- 道德困境導航器
- 會議記錄員
- 成語解析器
- 程式碼顧問
- 函數製造者
- 新詞創造者
- CSV 轉換器
- 表情符號編碼器
- 文章潤色師
- 觀點權衡者
- 知識問答生成器
- 正念導師
- 二年級簡化器
- VR 健身創新者
- PII 淨化器
- 備忘錄大師
- 職業顧問
- 評分大師
- 繞口令
- 面試問題設計師
- 文法精靈
- 猜謎遊戲
- 程式碼解釋器
- 外星人類學家
- 資料整理器
- 品牌建構者
- 效率估算器
- 評論分類器
- 方向解碼器
- 激勵繆斯
- 電子郵件提取器
- 專業審核員
- 課程計劃制定者
- 蘇格拉底式智者
- 頭韻煉金術師
- 未來主義時尚顧問
- 多語言超能力
- 產品命名專家
- 哲學沉思
- 電子表格巫師
- 科幻場景模擬器
- 自適應編輯器
- 巴別塔的廣播
- 推文語調偵測器
- 機場代碼分析師
提示詞庫
程式碼顧問
建議改進以優化 Python 程式碼效能。
將此提示複製到我們的開發者控制台中,親自試試看!
內容 | |
---|---|
System | 你的任務是分析提供的 Python 程式碼片段並建議改進以優化其效能。識別程式碼可以變得更高效、更快速或更少資源密集的區域。提供具體的優化建議,並解釋這些變更如何增強程式碼的效能。優化後的程式碼應保持與原始程式碼相同的功能,同時展示改進的效率。 |
User | def fibonacci(n): if n <= 0: return [] elif n == 1: return [0] elif n == 2: return [0, 1] else: fib = [0, 1] for i in range(2, n): fib.append(fib[i-1] + fib[i-2]) return fib |
範例輸出
Python
def fibonacci(n):
a, b = 0, 1
for _ in range(n):
yield a
a, b = b, a + b
解釋:使用帶有 yield 的生成器函數來生成斐波那契數列更加記憶體高效。它避免了在列表中創建和存儲整個序列。相反,它根據需要即時生成每個數字。
API 請求
import anthropic
client = anthropic.Anthropic( # 默認為 os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib",
}
],
}
],
)
print(message.content)
import anthropic
client = anthropic.Anthropic( # 默認為 os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib",
}
],
}
],
)
print(message.content)
import Anthropic from "@anthropic-ai/sdk";
const anthropic = new Anthropic({
apiKey: "my_api_key", // defaults to process.env["ANTHROPIC_API_KEY"]
});
const msg = await anthropic.messages.create({
model: "claude-opus-4-20250514",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib"
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicBedrock
# 請參閱 https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
# 了解認證選項
client = AnthropicBedrock()
message = client.messages.create(
model="anthropic.claude-opus-4-20250514-v1:0",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib"
}
]
}
]
)
print(message.content)
import AnthropicBedrock from "@anthropic-ai/bedrock-sdk";
// 請參閱 https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
// 了解認證選項
const client = new AnthropicBedrock();
const msg = await client.messages.create({
model: "anthropic.claude-opus-4-20250514-v1:0",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib"
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicVertex
client = AnthropicVertex()
message = client.messages.create(
model="claude-3-7-sonnet-v1@20250219",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib"
}
]
}
]
)
print(message.content)
import { AnthropicVertex } from '@anthropic-ai/vertex-sdk';
// 從 `CLOUD_ML_REGION` 和 `ANTHROPIC_VERTEX_PROJECT_ID` 環境變數讀取。
// 此外還通過標準 `google-auth-library` 流程。
const client = new AnthropicVertex();
const msg = await client.messages.create({
model: "claude-3-7-sonnet-v1@20250219",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib"
}
]
}
]
});
console.log(msg);