提示詞庫
Python 除錯專家
資源
- Overview
- 快速入門
- Claude 3 模型卡
- Claude 3.7 系統卡
- 系統狀態
- Anthropic 課程
- 提示詞庫
- 提示詞庫
- 宇宙鍵盤
- 企業預見者
- 網站精靈
- Excel 公式專家
- Google Apps 腳本編寫者
- Python 除錯專家
- 時間旅行顧問
- 故事創作夥伴
- 引用您的來源
- SQL 巫師
- 解夢師
- 雙關語大師
- 料理創作者
- 混合詞詩人
- 幽默助手哈爾
- LaTeX 專家
- 情緒色彩轉換器
- Git 精通
- 比喻達人
- 道德困境導航器
- 會議記錄員
- 成語解析器
- 程式碼顧問
- 函數製造者
- 新詞創造者
- CSV 轉換器
- 表情符號編碼器
- 文章潤色師
- 觀點權衡者
- 知識問答生成器
- 正念導師
- 二年級簡化器
- VR 健身創新者
- PII 淨化器
- 備忘錄大師
- 職業顧問
- 評分大師
- 繞口令
- 面試問題設計師
- 文法精靈
- 猜謎遊戲
- 程式碼解釋器
- 外星人類學家
- 資料整理器
- 品牌建構者
- 效率估算器
- 評論分類器
- 方向解碼器
- 激勵繆斯
- 電子郵件提取器
- 專業審核員
- 課程計劃制定者
- 蘇格拉底式智者
- 頭韻煉金術師
- 未來主義時尚顧問
- 多語言超能力
- 產品命名專家
- 哲學沉思
- 電子表格巫師
- 科幻場景模擬器
- 自適應編輯器
- 巴別塔的廣播
- 推文語調偵測器
- 機場代碼分析師
提示詞庫
Python 除錯專家
檢測並修復 Python 代碼中的錯誤。
將此提示複製到我們的開發者控制台中,親自嘗試!
內容 | |
---|---|
System | 你的任務是分析提供的 Python 代碼片段,識別其中存在的任何錯誤或問題,並提供一個解決這些問題的修正版本。解釋你在原始代碼中發現的問題以及你的修復如何解決這些問題。修正後的代碼應該是功能正常、高效的,並且遵循 Python 編程的最佳實踐。 |
User | def calculate_average(nums): sum = 0 for num in nums: sum += num average = sum / len(nums) return average numbers = [10, 20, 30, 40, 50] result = calculate_average(numbers) print(“The average is:”, results) |
輸出示例
修正後的 Python 代碼:
Python
def calculate_average(nums):
total = 0
for num in nums:
total += num
average = total / len(nums)
return average
numbers = [10, 20, 30, 40, 50]
result = calculate_average(numbers)
print("The average is:", result)
解釋:
- 將變量名 “sum” 更改為 “total”,以避免使用 Python 內置函數 “sum()”。
- 修復了打印語句中的拼寫錯誤,將 “results” 更改為 “result”,以正確引用變量。
API 請求
import anthropic
client = anthropic.Anthropic(
# 默認為 os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import anthropic
client = anthropic.Anthropic(
# 默認為 os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import Anthropic from "@anthropic-ai/sdk";
const anthropic = new Anthropic({
apiKey: "my_api_key", // 默認為 process.env["ANTHROPIC_API_KEY"]
});
const msg = await anthropic.messages.create({
model: "claude-opus-4-20250514",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicBedrock
# 查看 https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
# 了解認證選項
client = AnthropicBedrock()
message = client.messages.create(
model="anthropic.claude-opus-4-20250514-v1:0",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import AnthropicBedrock from "@anthropic-ai/bedrock-sdk";
// 查看 https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
// 了解認證選項
const client = new AnthropicBedrock();
const msg = await client.messages.create({
model: "anthropic.claude-opus-4-20250514-v1:0",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicVertex
client = AnthropicVertex()
message = client.messages.create(
model="claude-3-7-sonnet-v1@20250219",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import { AnthropicVertex } from '@anthropic-ai/vertex-sdk';
// 讀取 `CLOUD_ML_REGION` 和 `ANTHROPIC_VERTEX_PROJECT_ID` 環境變量。
// 此外還會通過標準的 `google-auth-library` 流程。
const client = new AnthropicVertex();
const msg = await client.messages.create({
model: "claude-3-7-sonnet-v1@20250219",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
});
console.log(msg);
Was this page helpful?