Biblioteca de Prompts
Hechicero SQL
Recursos
- Overview
- Inicios rápidos
- Ficha técnica de Claude 3
- Tarjeta de sistema de Claude 3.7
- Estado del sistema
- Cursos de Anthropic
- Biblioteca de Prompts
- Biblioteca de Prompts
- Pulsaciones Cósmicas
- Clarividente corporativo
- Asistente de sitios web
- Experto en fórmulas de Excel
- Programador de scripts para Google Apps
- Corrector de errores de Python
- Consultor de viajes en el tiempo
- Compañero de narración
- Cita tus fuentes
- Hechicero SQL
- Intérprete de sueños
- Pun-dit
- Creador culinario
- Poeta de palabras combinadas
- Hal el ayudante humorístico
- Leyenda de LaTeX
- Colorizador de estados de ánimo
- Git gud
- Genio de los símiles
- Navegador de dilemas éticos
- Escriba de reuniones
- Iluminador de modismos
- Consultor de código
- Fabricante de funciones
- Creador de neologismos
- Conversor de CSV
- Codificador de emojis
- Pulidor de prosa
- Evaluador de perspectivas
- Generador de trivias
- Mentor de atención plena
- Simplificador de segundo grado
- Innovador de fitness en RV
- Purificador de PII
- Maestro de memorandos
- Entrenador de carrera profesional
- Gurú de calificación
- Trabalenguas
- Creador de preguntas para entrevistas
- Genio gramatical
- Adivina adivinanza
- Clarificador de código
- Antropólogo alienígena
- Organizador de datos
- Creador de marca
- Estimador de eficiencia
- Clasificador de reseñas
- Decodificador de instrucciones
- Musa motivacional
- Extractor de correos electrónicos
- Moderador experto
- Planificador de lecciones
- Sabio socrático
- Alquimista de aliteraciones
- Asesor de moda futurista
- Superpoderes políglotas
- Experto en nombres de productos
- Reflexiones filosóficas
- Hechicero de hojas de cálculo
- Simulador de escenarios de ciencia ficción
- Editor adaptativo
- Transmisiones de Babel
- Detector de tono de tweets
- Analista de códigos de aeropuerto
Biblioteca de Prompts
Hechicero SQL
Transforma el lenguaje cotidiano en consultas SQL.
Copia este prompt en nuestra Consola para desarrolladores para probarlo tú mismo!
Contenido | |
---|---|
System | Transforma las siguientes solicitudes en lenguaje natural en consultas SQL válidas. Asume que existe una base de datos con las siguientes tablas y columnas: Customers: - customer_id (INT, PRIMARY KEY) - first_name (VARCHAR) - last_name (VARCHAR) - email (VARCHAR) - phone (VARCHAR) - address (VARCHAR) - city (VARCHAR) - state (VARCHAR) - zip_code (VARCHAR) Products: - product_id (INT, PRIMARY KEY) - product_name (VARCHAR) - description (TEXT) - category (VARCHAR) - price (DECIMAL) - stock_quantity (INT) Orders: - order_id (INT, PRIMARY KEY) - customer_id (INT, FOREIGN KEY REFERENCES Customers) - order_date (DATE) - total_amount (DECIMAL) - status (VARCHAR) Order_Items: - order_item_id (INT, PRIMARY KEY) - order_id (INT, FOREIGN KEY REFERENCES Orders) - product_id (INT, FOREIGN KEY REFERENCES Products) - quantity (INT) - price (DECIMAL) Reviews: - review_id (INT, PRIMARY KEY) - product_id (INT, FOREIGN KEY REFERENCES Products) - customer_id (INT, FOREIGN KEY REFERENCES Customers) - rating (INT) - comment (TEXT) - review_date (DATE) Employees: - employee_id (INT, PRIMARY KEY) - first_name (VARCHAR) - last_name (VARCHAR) - email (VARCHAR) - phone (VARCHAR) - hire_date (DATE) - job_title (VARCHAR) - department (VARCHAR) - salary (DECIMAL) Proporciona la consulta SQL que recuperaría los datos basados en la solicitud en lenguaje natural. |
User | Obtén la lista de clientes que han realizado pedidos pero no han proporcionado ninguna reseña, junto con el monto total que han gastado en pedidos. |
Ejemplo de salida
SELECT c.first_name, c.last_name, SUM(o.total_amount) AS total_spent
FROM Customers c
INNER JOIN Orders o ON c.customer_id = o.customer_id
LEFT JOIN Reviews r ON c.customer_id = r.customer_id
WHERE r.review_id IS NULL
GROUP BY c.customer_id, c.first_name, c.last_name;
Solicitud de API
import anthropic
client = anthropic.Anthropic(
# defaults to os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Transform the following natural language requests into valid SQL queries. Assume a database with the following tables and columns exists: \n \nCustomers: \n- customer_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- address (VARCHAR) \n- city (VARCHAR) \n- state (VARCHAR) \n- zip_code (VARCHAR) \n \nProducts: \n- product_id (INT, PRIMARY KEY) \n- product_name (VARCHAR) \n- description (TEXT) \n- category (VARCHAR) \n- price (DECIMAL) \n- stock_quantity (INT) \n \nOrders: \n- order_id (INT, PRIMARY KEY) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- order_date (DATE) \n- total_amount (DECIMAL) \n- status (VARCHAR) \n \nOrder_Items: \n- order_item_id (INT, PRIMARY KEY) \n- order_id (INT, FOREIGN KEY REFERENCES Orders) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- quantity (INT) \n- price (DECIMAL) \n \nReviews: \n- review_id (INT, PRIMARY KEY) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- rating (INT) \n- comment (TEXT) \n- review_date (DATE) \n \nEmployees: \n- employee_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- hire_date (DATE) \n- job_title (VARCHAR) \n- department (VARCHAR) \n- salary (DECIMAL) \n \nProvide the SQL query that would retrieve the data based on the natural language request.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Get the list of customers who have placed orders but have not provided any reviews, along with the total amount they have spent on orders."
}
]
}
]
)
print(message.content)
import anthropic
client = anthropic.Anthropic(
# defaults to os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Transform the following natural language requests into valid SQL queries. Assume a database with the following tables and columns exists: \n \nCustomers: \n- customer_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- address (VARCHAR) \n- city (VARCHAR) \n- state (VARCHAR) \n- zip_code (VARCHAR) \n \nProducts: \n- product_id (INT, PRIMARY KEY) \n- product_name (VARCHAR) \n- description (TEXT) \n- category (VARCHAR) \n- price (DECIMAL) \n- stock_quantity (INT) \n \nOrders: \n- order_id (INT, PRIMARY KEY) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- order_date (DATE) \n- total_amount (DECIMAL) \n- status (VARCHAR) \n \nOrder_Items: \n- order_item_id (INT, PRIMARY KEY) \n- order_id (INT, FOREIGN KEY REFERENCES Orders) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- quantity (INT) \n- price (DECIMAL) \n \nReviews: \n- review_id (INT, PRIMARY KEY) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- rating (INT) \n- comment (TEXT) \n- review_date (DATE) \n \nEmployees: \n- employee_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- hire_date (DATE) \n- job_title (VARCHAR) \n- department (VARCHAR) \n- salary (DECIMAL) \n \nProvide the SQL query that would retrieve the data based on the natural language request.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Get the list of customers who have placed orders but have not provided any reviews, along with the total amount they have spent on orders."
}
]
}
]
)
print(message.content)
import Anthropic from "@anthropic-ai/sdk";
const anthropic = new Anthropic({
apiKey: "my_api_key", // defaults to process.env["ANTHROPIC_API_KEY"]
});
const msg = await anthropic.messages.create({
model: "claude-opus-4-20250514",
max_tokens: 1000,
temperature: 0,
system: "Transform the following natural language requests into valid SQL queries. Assume a database with the following tables and columns exists: \n \nCustomers: \n- customer_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- address (VARCHAR) \n- city (VARCHAR) \n- state (VARCHAR) \n- zip_code (VARCHAR) \n \nProducts: \n- product_id (INT, PRIMARY KEY) \n- product_name (VARCHAR) \n- description (TEXT) \n- category (VARCHAR) \n- price (DECIMAL) \n- stock_quantity (INT) \n \nOrders: \n- order_id (INT, PRIMARY KEY) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- order_date (DATE) \n- total_amount (DECIMAL) \n- status (VARCHAR) \n \nOrder_Items: \n- order_item_id (INT, PRIMARY KEY) \n- order_id (INT, FOREIGN KEY REFERENCES Orders) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- quantity (INT) \n- price (DECIMAL) \n \nReviews: \n- review_id (INT, PRIMARY KEY) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- rating (INT) \n- comment (TEXT) \n- review_date (DATE) \n \nEmployees: \n- employee_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- hire_date (DATE) \n- job_title (VARCHAR) \n- department (VARCHAR) \n- salary (DECIMAL) \n \nProvide the SQL query that would retrieve the data based on the natural language request.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Get the list of customers who have placed orders but have not provided any reviews, along with the total amount they have spent on orders."
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicBedrock
# See https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
# for authentication options
client = AnthropicBedrock()
message = client.messages.create(
model="anthropic.claude-opus-4-20250514-v1:0",
max_tokens=1000,
temperature=0,
system="Transform the following natural language requests into valid SQL queries. Assume a database with the following tables and columns exists: \n \nCustomers: \n- customer_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- address (VARCHAR) \n- city (VARCHAR) \n- state (VARCHAR) \n- zip_code (VARCHAR) \n \nProducts: \n- product_id (INT, PRIMARY KEY) \n- product_name (VARCHAR) \n- description (TEXT) \n- category (VARCHAR) \n- price (DECIMAL) \n- stock_quantity (INT) \n \nOrders: \n- order_id (INT, PRIMARY KEY) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- order_date (DATE) \n- total_amount (DECIMAL) \n- status (VARCHAR) \n \nOrder_Items: \n- order_item_id (INT, PRIMARY KEY) \n- order_id (INT, FOREIGN KEY REFERENCES Orders) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- quantity (INT) \n- price (DECIMAL) \n \nReviews: \n- review_id (INT, PRIMARY KEY) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- rating (INT) \n- comment (TEXT) \n- review_date (DATE) \n \nEmployees: \n- employee_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- hire_date (DATE) \n- job_title (VARCHAR) \n- department (VARCHAR) \n- salary (DECIMAL) \n \nProvide the SQL query that would retrieve the data based on the natural language request.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Get the list of customers who have placed orders but have not provided any reviews, along with the total amount they have spent on orders."
}
]
}
]
)
print(message.content)
import AnthropicBedrock from "@anthropic-ai/bedrock-sdk";
// See https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
// for authentication options
const client = new AnthropicBedrock();
const msg = await client.messages.create({
model: "anthropic.claude-opus-4-20250514-v1:0",
max_tokens: 1000,
temperature: 0,
system: "Transform the following natural language requests into valid SQL queries. Assume a database with the following tables and columns exists: \n \nCustomers: \n- customer_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- address (VARCHAR) \n- city (VARCHAR) \n- state (VARCHAR) \n- zip_code (VARCHAR) \n \nProducts: \n- product_id (INT, PRIMARY KEY) \n- product_name (VARCHAR) \n- description (TEXT) \n- category (VARCHAR) \n- price (DECIMAL) \n- stock_quantity (INT) \n \nOrders: \n- order_id (INT, PRIMARY KEY) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- order_date (DATE) \n- total_amount (DECIMAL) \n- status (VARCHAR) \n \nOrder_Items: \n- order_item_id (INT, PRIMARY KEY) \n- order_id (INT, FOREIGN KEY REFERENCES Orders) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- quantity (INT) \n- price (DECIMAL) \n \nReviews: \n- review_id (INT, PRIMARY KEY) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- rating (INT) \n- comment (TEXT) \n- review_date (DATE) \n \nEmployees: \n- employee_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- hire_date (DATE) \n- job_title (VARCHAR) \n- department (VARCHAR) \n- salary (DECIMAL) \n \nProvide the SQL query that would retrieve the data based on the natural language request.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Get the list of customers who have placed orders but have not provided any reviews, along with the total amount they have spent on orders."
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicVertex
client = AnthropicVertex()
message = client.messages.create(
model="claude-3-7-sonnet-v1@20250219",
max_tokens=1000,
temperature=0,
system="Transform the following natural language requests into valid SQL queries. Assume a database with the following tables and columns exists: \n \nCustomers: \n- customer_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- address (VARCHAR) \n- city (VARCHAR) \n- state (VARCHAR) \n- zip_code (VARCHAR) \n \nProducts: \n- product_id (INT, PRIMARY KEY) \n- product_name (VARCHAR) \n- description (TEXT) \n- category (VARCHAR) \n- price (DECIMAL) \n- stock_quantity (INT) \n \nOrders: \n- order_id (INT, PRIMARY KEY) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- order_date (DATE) \n- total_amount (DECIMAL) \n- status (VARCHAR) \n \nOrder_Items: \n- order_item_id (INT, PRIMARY KEY) \n- order_id (INT, FOREIGN KEY REFERENCES Orders) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- quantity (INT) \n- price (DECIMAL) \n \nReviews: \n- review_id (INT, PRIMARY KEY) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- rating (INT) \n- comment (TEXT) \n- review_date (DATE) \n \nEmployees: \n- employee_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- hire_date (DATE) \n- job_title (VARCHAR) \n- department (VARCHAR) \n- salary (DECIMAL) \n \nProvide the SQL query that would retrieve the data based on the natural language request.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Get the list of customers who have placed orders but have not provided any reviews, along with the total amount they have spent on orders."
}
]
}
]
)
print(message.content)
import { AnthropicVertex } from '@anthropic-ai/vertex-sdk';
// Reads from the `CLOUD_ML_REGION` & `ANTHROPIC_VERTEX_PROJECT_ID` environment variables.
// Additionally goes through the standard `google-auth-library` flow.
const client = new AnthropicVertex();
const msg = await client.messages.create({
model: "claude-3-7-sonnet-v1@20250219",
max_tokens: 1000,
temperature: 0,
system: "Transform the following natural language requests into valid SQL queries. Assume a database with the following tables and columns exists: \n \nCustomers: \n- customer_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- address (VARCHAR) \n- city (VARCHAR) \n- state (VARCHAR) \n- zip_code (VARCHAR) \n \nProducts: \n- product_id (INT, PRIMARY KEY) \n- product_name (VARCHAR) \n- description (TEXT) \n- category (VARCHAR) \n- price (DECIMAL) \n- stock_quantity (INT) \n \nOrders: \n- order_id (INT, PRIMARY KEY) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- order_date (DATE) \n- total_amount (DECIMAL) \n- status (VARCHAR) \n \nOrder_Items: \n- order_item_id (INT, PRIMARY KEY) \n- order_id (INT, FOREIGN KEY REFERENCES Orders) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- quantity (INT) \n- price (DECIMAL) \n \nReviews: \n- review_id (INT, PRIMARY KEY) \n- product_id (INT, FOREIGN KEY REFERENCES Products) \n- customer_id (INT, FOREIGN KEY REFERENCES Customers) \n- rating (INT) \n- comment (TEXT) \n- review_date (DATE) \n \nEmployees: \n- employee_id (INT, PRIMARY KEY) \n- first_name (VARCHAR) \n- last_name (VARCHAR) \n- email (VARCHAR) \n- phone (VARCHAR) \n- hire_date (DATE) \n- job_title (VARCHAR) \n- department (VARCHAR) \n- salary (DECIMAL) \n \nProvide the SQL query that would retrieve the data based on the natural language request.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Get the list of customers who have placed orders but have not provided any reviews, along with the total amount they have spent on orders."
}
]
}
]
});
console.log(msg);
Was this page helpful?
On this page