Libreria di prompt
Fabbricatore di funzioni
Risorse
- Overview
- Guide rapide
- Scheda modello Claude 3
- Scheda di sistema Claude 3.7
- Stato del sistema
- Corsi Anthropic
- Libreria di prompt
- Libreria di Prompt
- Battute Cosmiche
- Chiaroveggente aziendale
- Creatore di siti web
- Esperto di formule Excel
- Programmatore di script per Google apps
- Cacciatore di bug Python
- Consulente di viaggi nel tempo
- Compagno di narrazione
- Cita le tue fonti
- Stregone SQL
- Interprete dei sogni
- Pun-dit
- Creatore culinario
- Poeta di portmanteau
- Hal l'assistente umoristico
- Leggenda LaTeX
- Coloratore di stati d'animo
- Git gud
- Esperto di similitudini
- Navigatore di dilemmi etici
- Meeting scribe
- Illuminatore di modi di dire
- Consulente di codice
- Fabbricatore di funzioni
- Creatore di neologismi
- Convertitore CSV
- Codificatore di emoji
- Perfezionatore di prosa
- Valutatore di prospettive
- Generatore di quiz
- Mentore di mindfulness
- Semplificatore per la seconda elementare
- Innovatore di fitness VR
- Purificatore di PII
- Maestro dei memo
- Coach di carriera
- Guru della valutazione
- Scioglilingua
- Creatore di domande per colloqui
- Genio della grammatica
- Indovinello per te
- Chiarificatore di codice
- Antropologo alieno
- Organizzatore di dati
- Creatore di brand
- Stimatore di efficienza
- Classificatore di recensioni
- Decodificatore di direzioni
- Musa motivazionale
- Estrattore di email
- Moderatore esperto
- Pianificatore di lezioni
- Saggio socratico
- Alchimista dell'allitterazione
- Consulente di moda futuristica
- Superpoteri poliglotti
- Esperto di nomi di prodotti
- Riflessioni filosofiche
- Mago dei fogli di calcolo
- Simulatore di scenari di fantascienza
- Editor adattivo
- Trasmissioni di Babele
- Rilevatore del tono dei tweet
- Analista di codici aeroportuali
Libreria di prompt
Fabbricatore di funzioni
Crea funzioni Python basate su specifiche dettagliate.
Copia questo prompt nella nostra Console per sviluppatori per provarlo tu stesso!
Contenuto | |
---|---|
System | Il tuo compito è creare funzioni Python basate sulle richieste in linguaggio naturale fornite. Le richieste descriveranno la funzionalità desiderata della funzione, inclusi i parametri di input e il valore di ritorno previsto. Implementa le funzioni secondo le specifiche fornite, assicurandoti che gestiscano i casi limite, eseguano le validazioni necessarie e seguano le migliori pratiche per la programmazione Python. Includi commenti appropriati nel codice per spiegare la logica e aiutare altri sviluppatori a comprendere l’implementazione. |
User | Voglio una funzione che possa risolvere un puzzle Sudoku. La funzione dovrebbe prendere come input una griglia Sudoku 9x9, dove le celle vuote sono rappresentate dal valore 0. La funzione dovrebbe risolvere il puzzle utilizzando un algoritmo di backtracking e restituire la griglia risolta. Se il puzzle non è risolvibile, dovrebbe restituire None. La funzione dovrebbe anche validare la griglia di input per assicurarsi che sia un puzzle Sudoku valido. |
Esempio di Output
Python
def solve_sudoku(grid):
def is_valid(row, col, num):
# Check if the number is valid in the current row and column
for i in range(9):
if grid[row][i] == num or grid[i][col] == num:
return False
# Check if the number is valid in the current 3x3 subgrid
start_row, start_col = (row // 3) * 3, (col // 3) * 3
for i in range(3):
for j in range(3):
if grid[start_row + i][start_col + j] == num:
return False
return True
def backtrack(row, col):
# If we have filled all cells, the puzzle is solved
if row == 9:
return True
# Move to the next row if we have reached the end of the current row
if col == 9:
return backtrack(row + 1, 0)
# If the current cell is already filled, move to the next cell
if grid[row][col] != 0:
return backtrack(row, col + 1)
# Try filling the current cell with numbers from 1 to 9
for num in range(1, 10):
if is_valid(row, col, num):
grid[row][col] = num
if backtrack(row, col + 1):
return True
grid[row][col] = 0
# If no valid number is found, backtrack
return False
# Validate the input grid
if not all(len(row) == 9 and all(0 <= cell <= 9 for cell in row) for row in grid):
return None
# Start the backtracking algorithm
if backtrack(0, 0):
return grid
else:
return None
Richiesta API
import anthropic
client = anthropic.Anthropic( # defaults to os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to create Python functions based on the provided natural language requests. The requests will describe the desired functionality of the function, including the input parameters and expected return value. Implement the functions according to the given specifications, ensuring that they handle edge cases, perform necessary validations, and follow best practices for Python programming. Please include appropriate comments in the code to explain the logic and assist other developers in understanding the implementation.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "I want a function that can solve a Sudoku puzzle. The function should take a 9x9 Sudoku grid as input, where empty cells are represented by the value 0. The function should solve the puzzle using a backtracking algorithm and return the solved grid. If the puzzle is unsolvable, it should return None. The function should also validate the input grid to ensure it is a valid Sudoku puzzle.",
}
],
}
],
)
print(message.content)
import anthropic
client = anthropic.Anthropic( # defaults to os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to create Python functions based on the provided natural language requests. The requests will describe the desired functionality of the function, including the input parameters and expected return value. Implement the functions according to the given specifications, ensuring that they handle edge cases, perform necessary validations, and follow best practices for Python programming. Please include appropriate comments in the code to explain the logic and assist other developers in understanding the implementation.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "I want a function that can solve a Sudoku puzzle. The function should take a 9x9 Sudoku grid as input, where empty cells are represented by the value 0. The function should solve the puzzle using a backtracking algorithm and return the solved grid. If the puzzle is unsolvable, it should return None. The function should also validate the input grid to ensure it is a valid Sudoku puzzle.",
}
],
}
],
)
print(message.content)
import Anthropic from "@anthropic-ai/sdk";
const anthropic = new Anthropic({
apiKey: "my_api_key", // defaults to process.env["ANTHROPIC_API_KEY"]
});
const msg = await anthropic.messages.create({
model: "claude-opus-4-20250514",
max_tokens: 1000,
temperature: 0,
system: "Your task is to create Python functions based on the provided natural language requests. The requests will describe the desired functionality of the function, including the input parameters and expected return value. Implement the functions according to the given specifications, ensuring that they handle edge cases, perform necessary validations, and follow best practices for Python programming. Please include appropriate comments in the code to explain the logic and assist other developers in understanding the implementation.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "I want a function that can solve a Sudoku puzzle. The function should take a 9x9 Sudoku grid as input, where empty cells are represented by the value 0. The function should solve the puzzle using a backtracking algorithm and return the solved grid. If the puzzle is unsolvable, it should return None. The function should also validate the input grid to ensure it is a valid Sudoku puzzle."
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicBedrock
# See https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
# for authentication options
client = AnthropicBedrock()
message = client.messages.create(
model="anthropic.claude-opus-4-20250514-v1:0",
max_tokens=1000,
temperature=0,
system="Your task is to create Python functions based on the provided natural language requests. The requests will describe the desired functionality of the function, including the input parameters and expected return value. Implement the functions according to the given specifications, ensuring that they handle edge cases, perform necessary validations, and follow best practices for Python programming. Please include appropriate comments in the code to explain the logic and assist other developers in understanding the implementation.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "I want a function that can solve a Sudoku puzzle. The function should take a 9x9 Sudoku grid as input, where empty cells are represented by the value 0. The function should solve the puzzle using a backtracking algorithm and return the solved grid. If the puzzle is unsolvable, it should return None. The function should also validate the input grid to ensure it is a valid Sudoku puzzle."
}
]
}
]
)
print(message.content)
import AnthropicBedrock from "@anthropic-ai/bedrock-sdk";
// See https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
// for authentication options
const client = new AnthropicBedrock();
const msg = await client.messages.create({
model: "anthropic.claude-opus-4-20250514-v1:0",
max_tokens: 1000,
temperature: 0,
system: "Your task is to create Python functions based on the provided natural language requests. The requests will describe the desired functionality of the function, including the input parameters and expected return value. Implement the functions according to the given specifications, ensuring that they handle edge cases, perform necessary validations, and follow best practices for Python programming. Please include appropriate comments in the code to explain the logic and assist other developers in understanding the implementation.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "I want a function that can solve a Sudoku puzzle. The function should take a 9x9 Sudoku grid as input, where empty cells are represented by the value 0. The function should solve the puzzle using a backtracking algorithm and return the solved grid. If the puzzle is unsolvable, it should return None. The function should also validate the input grid to ensure it is a valid Sudoku puzzle."
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicVertex
client = AnthropicVertex()
message = client.messages.create(
model="claude-3-7-sonnet-v1@20250219",
max_tokens=1000,
temperature=0,
system="Your task is to create Python functions based on the provided natural language requests. The requests will describe the desired functionality of the function, including the input parameters and expected return value. Implement the functions according to the given specifications, ensuring that they handle edge cases, perform necessary validations, and follow best practices for Python programming. Please include appropriate comments in the code to explain the logic and assist other developers in understanding the implementation.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "I want a function that can solve a Sudoku puzzle. The function should take a 9x9 Sudoku grid as input, where empty cells are represented by the value 0. The function should solve the puzzle using a backtracking algorithm and return the solved grid. If the puzzle is unsolvable, it should return None. The function should also validate the input grid to ensure it is a valid Sudoku puzzle."
}
]
}
]
)
print(message.content)
import { AnthropicVertex } from '@anthropic-ai/vertex-sdk';
// Reads from the `CLOUD_ML_REGION` & `ANTHROPIC_VERTEX_PROJECT_ID` environment variables.
// Additionally goes through the standard `google-auth-library` flow.
const client = new AnthropicVertex();
const msg = await client.messages.create({
model: "claude-3-7-sonnet-v1@20250219",
max_tokens: 1000,
temperature: 0,
system: "Your task is to create Python functions based on the provided natural language requests. The requests will describe the desired functionality of the function, including the input parameters and expected return value. Implement the functions according to the given specifications, ensuring that they handle edge cases, perform necessary validations, and follow best practices for Python programming. Please include appropriate comments in the code to explain the logic and assist other developers in understanding the implementation.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "I want a function that can solve a Sudoku puzzle. The function should take a 9x9 Sudoku grid as input, where empty cells are represented by the value 0. The function should solve the puzzle using a backtracking algorithm and return the solved grid. If the puzzle is unsolvable, it should return None. The function should also validate the input grid to ensure it is a valid Sudoku puzzle."
}
]
}
]
});
console.log(msg);
Was this page helpful?
On this page