プロンプトライブラリ
Pythonバグバスター
リソース
- Overview
- クイックスタート
- Claude 3モデルカード
- Claude 3.7 システムカード
- システムステータス
- Anthropic コース
- プロンプトライブラリ
- プロンプトライブラリ
- コズミック・キーストローク
- 企業の千里眼
- ウェブサイトウィザード
- Excelの数式エキスパート
- Google Apps スクリプター
- Pythonバグバスター
- タイムトラベルコンサルタント
- ストーリーテリングの相棒
- 情報源を引用する
- SQLソーサラー
- 夢の解釈者
- ダジャレ名人
- 料理クリエイター
- ポートマントー詩人
- 皮肉屋のヘルパー、ハル
- LaTeX レジェンド
- ムードカラライザー
- Git gud
- 直喩の達人
- 倫理的ジレンマナビゲーター
- 会議の書記
- 慣用句解説者
- コードコンサルタント
- 関数ファブリケーター
- 新語創造者
- CSVコンバーター
- 絵文字エンコーダー
- 文章磨き上げ
- 視点の考察者
- クイズジェネレーター
- マインドフルネスメンター
- 小学2年生向け簡易化ツール
- VRフィットネスイノベーター
- PII 除去ツール
- メモマエストロ
- キャリアコーチ
- 採点の達人
- 早口言葉
- 面接質問作成ツール
- 文法の魔人
- なぞなぞ出題
- コード解説者
- エイリアン人類学者
- データオーガナイザー
- ブランドビルダー
- 効率性評価ツール
- レビュー分類器
- 方向性デコーダー
- モチベーションの源
- メールアドレス抽出ツール
- マスターモデレーター
- 授業計画作成者
- ソクラテス式の賢者
- 頭韻の錬金術師
- 未来的ファッションアドバイザー
- 多言語スーパーパワー
- 製品ネーミングプロ
- 哲学的考察
- スプレッドシートの魔術師
- SFシナリオシミュレーター
- 適応型エディター
- バベルの放送
- ツイートトーン検出器
- 空港コードアナリスト
プロンプトライブラリ
Pythonバグバスター
Pythonコードのバグを検出して修正します。
このプロンプトを開発者コンソールにコピーして自分で試してみましょう!
内容 | |
---|---|
System | あなたの任務は、提供されたPythonコードスニペットを分析し、存在するバグやエラーを特定し、これらの問題を解決する修正版コードを提供することです。元のコードで見つけた問題と、あなたの修正がそれらにどう対処するかを説明してください。修正されたコードは機能的で効率的であり、Pythonプログラミングのベストプラクティスに準拠している必要があります。 |
User | def calculate_average(nums): sum = 0 for num in nums: sum += num average = sum / len(nums) return average numbers = [10, 20, 30, 40, 50] result = calculate_average(numbers) print(“The average is:”, results) |
出力例
修正されたPythonコード:
Python
def calculate_average(nums):
total = 0
for num in nums:
total += num
average = total / len(nums)
return average
numbers = [10, 20, 30, 40, 50]
result = calculate_average(numbers)
print("The average is:", result)
説明:
- 組み込みのPython関数「sum()」との競合を避けるため、変数名「sum」を「total」に変更しました。
- print文の誤字を修正し、「results」を「result」に変更して変数を正しく参照するようにしました。
APIリクエスト
import anthropic
client = anthropic.Anthropic(
# defaults to os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import anthropic
client = anthropic.Anthropic(
# defaults to os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import Anthropic from "@anthropic-ai/sdk";
const anthropic = new Anthropic({
apiKey: "my_api_key", // defaults to process.env["ANTHROPIC_API_KEY"]
});
const msg = await anthropic.messages.create({
model: "claude-opus-4-20250514",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicBedrock
# See https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
# for authentication options
client = AnthropicBedrock()
message = client.messages.create(
model="anthropic.claude-opus-4-20250514-v1:0",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import AnthropicBedrock from "@anthropic-ai/bedrock-sdk";
// See https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
// for authentication options
const client = new AnthropicBedrock();
const msg = await client.messages.create({
model: "anthropic.claude-opus-4-20250514-v1:0",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicVertex
client = AnthropicVertex()
message = client.messages.create(
model="claude-3-7-sonnet-v1@20250219",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import { AnthropicVertex } from '@anthropic-ai/vertex-sdk';
// Reads from the `CLOUD_ML_REGION` & `ANTHROPIC_VERTEX_PROJECT_ID` environment variables.
// Additionally goes through the standard `google-auth-library` flow.
const client = new AnthropicVertex();
const msg = await client.messages.create({
model: "claude-3-7-sonnet-v1@20250219",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
});
console.log(msg);
Was this page helpful?