资源
- Overview
- 快速入门
- Claude 3 模型卡
- Claude 3.7 系统卡
- 系统状态
- Anthropic 课程
- 提示词库
- 提示词库
- 宇宙键盘
- 企业预见者
- 网站向导
- Excel公式专家
- Google Apps 脚本编写者
- Python 错误修复器
- 时间旅行顾问
- 讲故事助手
- 引用你的来源
- SQL 魔法师
- 解梦师
- 双关语大师
- 烹饪创作者
- 混合词诗人
- 幽默助手哈尔
- LaTeX 指南
- 情绪色彩转换器
- Git 精通
- 比喻大师
- 伦理困境导航器
- 会议记录员
- 成语解析器
- 代码顾问
- 函数制造者
- 新词创造者
- CSV 转换器
- 表情符号编码器
- 文章润色师
- 观点权衡者
- 琐事生成器
- 正念导师
- 二年级简化器
- VR健身创新者
- PII 净化器
- 备忘录大师
- 职业教练
- 评分大师
- 绕口令
- 面试问题设计师
- 语法精灵
- 猜谜语
- 代码解释器
- 外星人类学家
- 数据整理器
- 品牌构建者
- 效率估算器
- 评论分类器
- 方向解码器
- 激励缪斯
- 电子邮件提取器
- 专业审核员
- 课程计划制定者
- 苏格拉底式智者
- 头韵炼金术师
- 未来主义时尚顾问
- 多语言超能力
- 产品命名专家
- 哲学沉思
- 电子表格魔术师
- 科幻场景模拟器
- 自适应编辑器
- 巴别塔的广播
- 推文语调检测器
- 机场代码分析器
提示词库
Python 错误修复器
检测并修复 Python 代码中的错误。
将此提示复制到我们的开发者控制台中,亲自尝试!
内容 | |
---|---|
System | 你的任务是分析提供的 Python 代码片段,识别其中存在的任何错误,并提供一个解决这些问题的修正版代码。解释你在原始代码中发现的问题以及你的修复如何解决这些问题。修正后的代码应该是功能正常、高效的,并且遵循 Python 编程的最佳实践。 |
User | def calculate_average(nums): sum = 0 for num in nums: sum += num average = sum / len(nums) return average numbers = [10, 20, 30, 40, 50] result = calculate_average(numbers) print(“The average is:”, results) |
示例输出
修正后的 Python 代码:
Python
def calculate_average(nums):
total = 0
for num in nums:
total += num
average = total / len(nums)
return average
numbers = [10, 20, 30, 40, 50]
result = calculate_average(numbers)
print("The average is:", result)
解释:
- 将变量名”sum”改为”total”,以避免使用 Python 内置函数”sum()”。
- 修复了打印语句中的拼写错误,将”results”改为”result”,以正确引用变量。
API 请求
import anthropic
client = anthropic.Anthropic(
# 默认为 os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import anthropic
client = anthropic.Anthropic(
# 默认为 os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import Anthropic from "@anthropic-ai/sdk";
const anthropic = new Anthropic({
apiKey: "my_api_key", // 默认为 process.env["ANTHROPIC_API_KEY"]
});
const msg = await anthropic.messages.create({
model: "claude-opus-4-20250514",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicBedrock
# 查看 https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
# 了解认证选项
client = AnthropicBedrock()
message = client.messages.create(
model="anthropic.claude-opus-4-20250514-v1:0",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import AnthropicBedrock from "@anthropic-ai/bedrock-sdk";
// 查看 https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
// 了解认证选项
const client = new AnthropicBedrock();
const msg = await client.messages.create({
model: "anthropic.claude-opus-4-20250514-v1:0",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicVertex
client = AnthropicVertex()
message = client.messages.create(
model="claude-3-7-sonnet-v1@20250219",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import { AnthropicVertex } from '@anthropic-ai/vertex-sdk';
// 读取 `CLOUD_ML_REGION` 和 `ANTHROPIC_VERTEX_PROJECT_ID` 环境变量。
// 此外还会通过标准的 `google-auth-library` 流程。
const client = new AnthropicVertex();
const msg = await client.messages.create({
model: "claude-3-7-sonnet-v1@20250219",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
});
console.log(msg);
Was this page helpful?