Promptbibliothek
Funktionsgenerator
Ressourcen
- Overview
- Schnellstarts
- Claude 3 Modellkarte
- Claude 3.7 Systemkarte
- Systemstatus
- Anthropic Kurse
- Promptbibliothek
- Prompt-Bibliothek
- Kosmische Tastenanschläge
- Unternehmensweissager
- Website-Assistent
- Excel-Formel-Experte
- Google Apps Scripter
- Python-Fehlerbeheber
- Zeitreiseberater
- Geschichten-Begleiter
- Quellen zitieren
- SQL-Zauberer
- Traumdeuter
- Wortspiel-Experte
- Kulinarischer Kreator
- Kofferwort-Poet
- Hal der humorvolle Helfer
- LaTeX-Legende
- Stimmungs-Kolorierung
- Git gud
- Vergleichs-Savant
- Ethischer Dilemma-Navigator
- Protokollführer für Meetings
- Redewendungs-Erklärer
- Code-Berater
- Funktionsgenerator
- Neologismus-Ersteller
- CSV-Konverter
- Emoji-Kodierer
- Textpolierer
- Perspektiven-Abwäger
- Quizfragen-Generator
- Achtsamkeits-Mentor
- Vereinfacher für die zweite Klasse
- VR-Fitness-Innovator
- PII-Bereiniger
- Memo-Meister
- Karrierecoach
- Bewertungsexperte
- Zungenbrecher
- Interviewfragen-Ersteller
- Grammatik-Genie
- Rate mal
- Code-Erklärer
- Außerirdischer Anthropologe
- Datenorganisator
- Markenentwickler
- Effizienzschätzer
- Bewertungsklassifikator
- Anweisungsdekoder
- Motivierende Muse
- E-Mail-Extraktor
- Meister-Moderator
- Unterrichtsplaner
- Sokratischer Weiser
- Alliterations-Alchemist
- Futuristischer Modeberater
- Polyglotte Superkräfte
- Produktnamen-Profi
- Philosophische Betrachtungen
- Tabellenkalkulationszauberer
- Science-Fiction-Szenario-Simulator
- Adaptiver Editor
- Babels Übertragungen
- Tweet-Tonalitätsdetektor
- Flughafen-Code-Analyst
Promptbibliothek
Funktionsgenerator
Erstelle Python-Funktionen basierend auf detaillierten Spezifikationen.
Kopiere diesen Prompt in unsere Entwickler-Console, um ihn selbst auszuprobieren!
Inhalt | |
---|---|
System | Deine Aufgabe ist es, Python-Funktionen basierend auf den bereitgestellten natürlichsprachlichen Anfragen zu erstellen. Die Anfragen werden die gewünschte Funktionalität der Funktion beschreiben, einschließlich der Eingabeparameter und des erwarteten Rückgabewerts. Implementiere die Funktionen gemäß den gegebenen Spezifikationen und stelle sicher, dass sie Grenzfälle behandeln, notwendige Validierungen durchführen und bewährte Praktiken für die Python-Programmierung befolgen. Bitte füge angemessene Kommentare im Code ein, um die Logik zu erklären und anderen Entwicklern das Verständnis der Implementierung zu erleichtern. |
User | Ich möchte eine Funktion, die ein Sudoku-Rätsel lösen kann. Die Funktion sollte ein 9x9 Sudoku-Gitter als Eingabe nehmen, wobei leere Zellen durch den Wert 0 dargestellt werden. Die Funktion sollte das Rätsel mit einem Backtracking-Algorithmus lösen und das gelöste Gitter zurückgeben. Wenn das Rätsel nicht lösbar ist, sollte sie None zurückgeben. Die Funktion sollte auch das Eingabegitter validieren, um sicherzustellen, dass es ein gültiges Sudoku-Rätsel ist. |
Beispiel-Ausgabe
Python
def solve_sudoku(grid):
def is_valid(row, col, num):
# Check if the number is valid in the current row and column
for i in range(9):
if grid[row][i] == num or grid[i][col] == num:
return False
# Check if the number is valid in the current 3x3 subgrid
start_row, start_col = (row // 3) * 3, (col // 3) * 3
for i in range(3):
for j in range(3):
if grid[start_row + i][start_col + j] == num:
return False
return True
def backtrack(row, col):
# If we have filled all cells, the puzzle is solved
if row == 9:
return True
# Move to the next row if we have reached the end of the current row
if col == 9:
return backtrack(row + 1, 0)
# If the current cell is already filled, move to the next cell
if grid[row][col] != 0:
return backtrack(row, col + 1)
# Try filling the current cell with numbers from 1 to 9
for num in range(1, 10):
if is_valid(row, col, num):
grid[row][col] = num
if backtrack(row, col + 1):
return True
grid[row][col] = 0
# If no valid number is found, backtrack
return False
# Validate the input grid
if not all(len(row) == 9 and all(0 <= cell <= 9 for cell in row) for row in grid):
return None
# Start the backtracking algorithm
if backtrack(0, 0):
return grid
else:
return None
API-Anfrage
import anthropic
client = anthropic.Anthropic( # defaults to os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to create Python functions based on the provided natural language requests. The requests will describe the desired functionality of the function, including the input parameters and expected return value. Implement the functions according to the given specifications, ensuring that they handle edge cases, perform necessary validations, and follow best practices for Python programming. Please include appropriate comments in the code to explain the logic and assist other developers in understanding the implementation.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "I want a function that can solve a Sudoku puzzle. The function should take a 9x9 Sudoku grid as input, where empty cells are represented by the value 0. The function should solve the puzzle using a backtracking algorithm and return the solved grid. If the puzzle is unsolvable, it should return None. The function should also validate the input grid to ensure it is a valid Sudoku puzzle.",
}
],
}
],
)
print(message.content)
import anthropic
client = anthropic.Anthropic( # defaults to os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to create Python functions based on the provided natural language requests. The requests will describe the desired functionality of the function, including the input parameters and expected return value. Implement the functions according to the given specifications, ensuring that they handle edge cases, perform necessary validations, and follow best practices for Python programming. Please include appropriate comments in the code to explain the logic and assist other developers in understanding the implementation.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "I want a function that can solve a Sudoku puzzle. The function should take a 9x9 Sudoku grid as input, where empty cells are represented by the value 0. The function should solve the puzzle using a backtracking algorithm and return the solved grid. If the puzzle is unsolvable, it should return None. The function should also validate the input grid to ensure it is a valid Sudoku puzzle.",
}
],
}
],
)
print(message.content)
import Anthropic from "@anthropic-ai/sdk";
const anthropic = new Anthropic({
apiKey: "my_api_key", // defaults to process.env["ANTHROPIC_API_KEY"]
});
const msg = await anthropic.messages.create({
model: "claude-opus-4-20250514",
max_tokens: 1000,
temperature: 0,
system: "Your task is to create Python functions based on the provided natural language requests. The requests will describe the desired functionality of the function, including the input parameters and expected return value. Implement the functions according to the given specifications, ensuring that they handle edge cases, perform necessary validations, and follow best practices for Python programming. Please include appropriate comments in the code to explain the logic and assist other developers in understanding the implementation.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "I want a function that can solve a Sudoku puzzle. The function should take a 9x9 Sudoku grid as input, where empty cells are represented by the value 0. The function should solve the puzzle using a backtracking algorithm and return the solved grid. If the puzzle is unsolvable, it should return None. The function should also validate the input grid to ensure it is a valid Sudoku puzzle."
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicBedrock
# See https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
# for authentication options
client = AnthropicBedrock()
message = client.messages.create(
model="anthropic.claude-opus-4-20250514-v1:0",
max_tokens=1000,
temperature=0,
system="Your task is to create Python functions based on the provided natural language requests. The requests will describe the desired functionality of the function, including the input parameters and expected return value. Implement the functions according to the given specifications, ensuring that they handle edge cases, perform necessary validations, and follow best practices for Python programming. Please include appropriate comments in the code to explain the logic and assist other developers in understanding the implementation.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "I want a function that can solve a Sudoku puzzle. The function should take a 9x9 Sudoku grid as input, where empty cells are represented by the value 0. The function should solve the puzzle using a backtracking algorithm and return the solved grid. If the puzzle is unsolvable, it should return None. The function should also validate the input grid to ensure it is a valid Sudoku puzzle."
}
]
}
]
)
print(message.content)
import AnthropicBedrock from "@anthropic-ai/bedrock-sdk";
// See https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
// for authentication options
const client = new AnthropicBedrock();
const msg = await client.messages.create({
model: "anthropic.claude-opus-4-20250514-v1:0",
max_tokens: 1000,
temperature: 0,
system: "Your task is to create Python functions based on the provided natural language requests. The requests will describe the desired functionality of the function, including the input parameters and expected return value. Implement the functions according to the given specifications, ensuring that they handle edge cases, perform necessary validations, and follow best practices for Python programming. Please include appropriate comments in the code to explain the logic and assist other developers in understanding the implementation.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "I want a function that can solve a Sudoku puzzle. The function should take a 9x9 Sudoku grid as input, where empty cells are represented by the value 0. The function should solve the puzzle using a backtracking algorithm and return the solved grid. If the puzzle is unsolvable, it should return None. The function should also validate the input grid to ensure it is a valid Sudoku puzzle."
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicVertex
client = AnthropicVertex()
message = client.messages.create(
model="claude-3-7-sonnet-v1@20250219",
max_tokens=1000,
temperature=0,
system="Your task is to create Python functions based on the provided natural language requests. The requests will describe the desired functionality of the function, including the input parameters and expected return value. Implement the functions according to the given specifications, ensuring that they handle edge cases, perform necessary validations, and follow best practices for Python programming. Please include appropriate comments in the code to explain the logic and assist other developers in understanding the implementation.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "I want a function that can solve a Sudoku puzzle. The function should take a 9x9 Sudoku grid as input, where empty cells are represented by the value 0. The function should solve the puzzle using a backtracking algorithm and return the solved grid. If the puzzle is unsolvable, it should return None. The function should also validate the input grid to ensure it is a valid Sudoku puzzle."
}
]
}
]
)
print(message.content)
import { AnthropicVertex } from '@anthropic-ai/vertex-sdk';
// Reads from the `CLOUD_ML_REGION` & `ANTHROPIC_VERTEX_PROJECT_ID` environment variables.
// Additionally goes through the standard `google-auth-library` flow.
const client = new AnthropicVertex();
const msg = await client.messages.create({
model: "claude-3-7-sonnet-v1@20250219",
max_tokens: 1000,
temperature: 0,
system: "Your task is to create Python functions based on the provided natural language requests. The requests will describe the desired functionality of the function, including the input parameters and expected return value. Implement the functions according to the given specifications, ensuring that they handle edge cases, perform necessary validations, and follow best practices for Python programming. Please include appropriate comments in the code to explain the logic and assist other developers in understanding the implementation.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "I want a function that can solve a Sudoku puzzle. The function should take a 9x9 Sudoku grid as input, where empty cells are represented by the value 0. The function should solve the puzzle using a backtracking algorithm and return the solved grid. If the puzzle is unsolvable, it should return None. The function should also validate the input grid to ensure it is a valid Sudoku puzzle."
}
]
}
]
});
console.log(msg);
Was this page helpful?
On this page