Promptbibliothek
Python-Fehlerbeheber
Ressourcen
- Overview
- Schnellstarts
- Claude 3 Modellkarte
- Claude 3.7 Systemkarte
- Systemstatus
- Anthropic Kurse
- Promptbibliothek
- Prompt-Bibliothek
- Kosmische Tastenanschläge
- Unternehmensweissager
- Website-Assistent
- Excel-Formel-Experte
- Google Apps Scripter
- Python-Fehlerbeheber
- Zeitreiseberater
- Geschichten-Begleiter
- Quellen zitieren
- SQL-Zauberer
- Traumdeuter
- Wortspiel-Experte
- Kulinarischer Kreator
- Kofferwort-Poet
- Hal der humorvolle Helfer
- LaTeX-Legende
- Stimmungs-Kolorierung
- Git gud
- Vergleichs-Savant
- Ethischer Dilemma-Navigator
- Protokollführer für Meetings
- Redewendungs-Erklärer
- Code-Berater
- Funktionsgenerator
- Neologismus-Ersteller
- CSV-Konverter
- Emoji-Kodierer
- Textpolierer
- Perspektiven-Abwäger
- Quizfragen-Generator
- Achtsamkeits-Mentor
- Vereinfacher für die zweite Klasse
- VR-Fitness-Innovator
- PII-Bereiniger
- Memo-Meister
- Karrierecoach
- Bewertungsexperte
- Zungenbrecher
- Interviewfragen-Ersteller
- Grammatik-Genie
- Rate mal
- Code-Erklärer
- Außerirdischer Anthropologe
- Datenorganisator
- Markenentwickler
- Effizienzschätzer
- Bewertungsklassifikator
- Anweisungsdekoder
- Motivierende Muse
- E-Mail-Extraktor
- Meister-Moderator
- Unterrichtsplaner
- Sokratischer Weiser
- Alliterations-Alchemist
- Futuristischer Modeberater
- Polyglotte Superkräfte
- Produktnamen-Profi
- Philosophische Betrachtungen
- Tabellenkalkulationszauberer
- Science-Fiction-Szenario-Simulator
- Adaptiver Editor
- Babels Übertragungen
- Tweet-Tonalitätsdetektor
- Flughafen-Code-Analyst
Promptbibliothek
Python-Fehlerbeheber
Erkennen und beheben von Fehlern in Python-Code.
Kopieren Sie diesen Prompt in unsere Entwickler-Konsole, um es selbst auszuprobieren!
Inhalt | |
---|---|
System | Ihre Aufgabe ist es, den bereitgestellten Python-Code-Ausschnitt zu analysieren, vorhandene Bugs oder Fehler zu identifizieren und eine korrigierte Version des Codes bereitzustellen, die diese Probleme behebt. Erklären Sie die Probleme, die Sie im ursprünglichen Code gefunden haben, und wie Ihre Korrekturen diese beheben. Der korrigierte Code sollte funktional, effizient sein und den Best Practices der Python-Programmierung entsprechen. |
User | def calculate_average(nums): sum = 0 for num in nums: sum += num average = sum / len(nums) return average numbers = [10, 20, 30, 40, 50] result = calculate_average(numbers) print(“The average is:”, results) |
Beispiel-Ausgabe
Korrigierter Python-Code:
Python
def calculate_average(nums):
total = 0
for num in nums:
total += num
average = total / len(nums)
return average
numbers = [10, 20, 30, 40, 50]
result = calculate_average(numbers)
print("The average is:", result)
Erklärung:
- Geändert den Variablennamen “sum” zu “total”, um die Verwendung der eingebauten Python-Funktion “sum()” zu vermeiden.
- Den Tippfehler in der print-Anweisung korrigiert, indem “results” zu “result” geändert wurde, um korrekt auf die Variable zu verweisen.
API-Anfrage
import anthropic
client = anthropic.Anthropic(
# defaults to os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import anthropic
client = anthropic.Anthropic(
# defaults to os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import Anthropic from "@anthropic-ai/sdk";
const anthropic = new Anthropic({
apiKey: "my_api_key", // defaults to process.env["ANTHROPIC_API_KEY"]
});
const msg = await anthropic.messages.create({
model: "claude-opus-4-20250514",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicBedrock
# See https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
# for authentication options
client = AnthropicBedrock()
message = client.messages.create(
model="anthropic.claude-opus-4-20250514-v1:0",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import AnthropicBedrock from "@anthropic-ai/bedrock-sdk";
// See https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
// for authentication options
const client = new AnthropicBedrock();
const msg = await client.messages.create({
model: "anthropic.claude-opus-4-20250514-v1:0",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicVertex
client = AnthropicVertex()
message = client.messages.create(
model="claude-3-7-sonnet-v1@20250219",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
)
print(message.content)
import { AnthropicVertex } from '@anthropic-ai/vertex-sdk';
// Reads from the `CLOUD_ML_REGION` & `ANTHROPIC_VERTEX_PROJECT_ID` environment variables.
// Additionally goes through the standard `google-auth-library` flow.
const client = new AnthropicVertex();
const msg = await client.messages.create({
model: "claude-3-7-sonnet-v1@20250219",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet, identify any bugs or errors present, and provide a corrected version of the code that resolves these issues. Explain the problems you found in the original code and how your fixes address them. The corrected code should be functional, efficient, and adhere to best practices in Python programming.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def calculate_average(nums):\n sum = 0\n for num in nums:\n sum += num\n average = sum / len(nums)\n return average\n\nnumbers = [10, 20, 30, 40, 50]\nresult = calculate_average(numbers)\nprint(\"The average is:\", results)"
}
]
}
]
});
console.log(msg);
Was this page helpful?
On this page