Bibliothèque de prompts
Consultant en code
Ressources
- Overview
- Démarrages rapides
- Fiche technique du modèle Claude 3
- Fiche système de Claude 3.7
- État du système
- Cours Anthropic
- Bibliothèque de prompts
- Bibliothèque de prompts
- Frappes Cosmiques
- Clairvoyant d'entreprise
- Assistant de création de site web
- Expert en formules Excel
- Scripteur d'applications Google
- Correcteur de bugs Python
- Consultant en voyage dans le temps
- Compagnon de narration
- Citez vos sources
- Sorcier SQL
- Interprète de rêves
- Pun-dit
- Créateur culinaire
- Poète de mots-valises
- Hal l'assistant humoristique
- Légende LaTeX
- Coloriste d'humeur
- Git gud
- Savant des comparaisons
- Navigateur de dilemmes éthiques
- Meeting scribe
- Illuminateur d'expressions idiomatiques
- Consultant en code
- Fabricant de fonctions
- Créateur de néologismes
- Convertisseur CSV
- Encodeur d'émojis
- Polisseur de prose
- Évaluateur de perspectives
- Générateur de quiz
- Mentor de pleine conscience
- Simplificateur pour élèves de primaire
- Innovateur de fitness en VR
- Purificateur de PII
- Maître des mémos
- Coach de carrière
- Gourou de l'évaluation
- Virelangue
- Créateur de questions d'entretien
- Génie de la grammaire
- Devine mon énigme
- Clarificateur de code
- Anthropologue extraterrestre
- Organisateur de données
- Créateur de marque
- Estimateur d'efficacité
- Classificateur d'avis
- Décodeur de directions
- Muse motivationnelle
- Extracteur d'e-mails
- Modérateur expert
- Planificateur de leçons
- Sage socratique
- Alchimiste de l'allitération
- Conseiller en mode futuriste
- Superpouvoirs polyglottes
- Expert en noms de produits
- Réflexions philosophiques
- Sorcier des feuilles de calcul
- Simulateur de scénarios de science-fiction
- Éditeur adaptatif
- Les diffusions de Babel
- Détecteur de ton des tweets
- Analyste de codes d'aéroport
Bibliothèque de prompts
Consultant en code
Suggérer des améliorations pour optimiser les performances du code Python.
Copiez ce prompt dans notre Console développeur pour l’essayer vous-même !
Contenu | |
---|---|
System | Votre tâche consiste à analyser l’extrait de code Python fourni et à suggérer des améliorations pour optimiser ses performances. Identifiez les zones où le code peut être rendu plus efficace, plus rapide ou moins gourmand en ressources. Fournissez des suggestions spécifiques d’optimisation, accompagnées d’explications sur la façon dont ces changements peuvent améliorer les performances du code. Le code optimisé doit conserver la même fonctionnalité que le code original tout en démontrant une efficacité améliorée. |
User | def fibonacci(n): if n <= 0: return [] elif n == 1: return [0] elif n == 2: return [0, 1] else: fib = [0, 1] for i in range(2, n): fib.append(fib[i-1] + fib[i-2]) return fib |
Exemple de sortie
Python
def fibonacci(n):
a, b = 0, 1
for _ in range(n):
yield a
a, b = b, a + b
Explication : L’utilisation d’une fonction génératrice avec yield est plus efficace en termes de mémoire pour générer la séquence de Fibonacci. Elle évite de créer et de stocker toute la séquence dans une liste. Au lieu de cela, elle génère chaque nombre à la volée selon les besoins.
Requête API
import anthropic
client = anthropic.Anthropic( # par défaut utilise os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib",
}
],
}
],
)
print(message.content)
import anthropic
client = anthropic.Anthropic( # par défaut utilise os.environ.get("ANTHROPIC_API_KEY")
api_key="my_api_key",
)
message = client.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib",
}
],
}
],
)
print(message.content)
import Anthropic from "@anthropic-ai/sdk";
const anthropic = new Anthropic({
apiKey: "my_api_key", // par défaut utilise process.env["ANTHROPIC_API_KEY"]
});
const msg = await anthropic.messages.create({
model: "claude-opus-4-20250514",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib"
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicBedrock
# Voir https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
# pour les options d'authentification
client = AnthropicBedrock()
message = client.messages.create(
model="anthropic.claude-opus-4-20250514-v1:0",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib"
}
]
}
]
)
print(message.content)
import AnthropicBedrock from "@anthropic-ai/bedrock-sdk";
// Voir https://docs.anthropic.com/claude/reference/claude-on-amazon-bedrock
// pour les options d'authentification
const client = new AnthropicBedrock();
const msg = await client.messages.create({
model: "anthropic.claude-opus-4-20250514-v1:0",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib"
}
]
}
]
});
console.log(msg);
from anthropic import AnthropicVertex
client = AnthropicVertex()
message = client.messages.create(
model="claude-3-7-sonnet-v1@20250219",
max_tokens=1000,
temperature=0,
system="Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib"
}
]
}
]
)
print(message.content)
import { AnthropicVertex } from '@anthropic-ai/vertex-sdk';
// Lit à partir des variables d'environnement `CLOUD_ML_REGION` & `ANTHROPIC_VERTEX_PROJECT_ID`.
// Passe également par le flux standard `google-auth-library`.
const client = new AnthropicVertex();
const msg = await client.messages.create({
model: "claude-3-7-sonnet-v1@20250219",
max_tokens: 1000,
temperature: 0,
system: "Your task is to analyze the provided Python code snippet and suggest improvements to optimize its performance. Identify areas where the code can be made more efficient, faster, or less resource-intensive. Provide specific suggestions for optimization, along with explanations of how these changes can enhance the code's performance. The optimized code should maintain the same functionality as the original code while demonstrating improved efficiency.",
messages: [
{
"role": "user",
"content": [
{
"type": "text",
"text": "def fibonacci(n):\n if n <= 0:\n return []\n elif n == 1:\n return [0]\n elif n == 2:\n return [0, 1]\n else:\n fib = [0, 1]\n for i in range(2, n):\n fib.append(fib[i-1] + fib[i-2])\n return fib"
}
]
}
]
});
console.log(msg);
Was this page helpful?
On this page